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Communication with light

Christian Koos

Advantages of Optical Communications:
• Large transmission capacity: Large fiber bandwidth of 250 …190 THz = 60 THz

Bitrates of typical services:
Voice (ISDN) 64 kbit/s (compressed < 10 kbit/s)
Picture (TV) 140 Mbit/s (compressed 2…6 Mbit/s)

Bitrates of transmission media:
Twisted pair 6 Mbit/s (6 km); coax 650 Mbit/s (1.5 km)
Glass fibre 1.28 Tbit/s single channel (240 km) HHI 2006
Fibre + WDM > 100 Tbit/s  (10 Billion ISDN, 20 Million TV)

• Long transmission distance due to low fiber loss
Down to 0.15 dB/km @ λ = 1.55 µm; 0.35 dB/km @ λ = 1.3 µm; 2.2 dB/km
@ λ = 0.85 µm, i. e., down to 3 dB (50%) power loss for a fibre length of L = 20 km

• Immunity to electromagnetic interference
High carrier frequency and strong confinement of the light inside the waveguide
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Wavelength-Division Multiplexing  (WDM)

Christian Koos

How to exploit full transmission bandwidth of 
optical transmission systems ?

fibres:          B ≈ 65 THz (450 nm) 

amplifiers:   B ≈ 10 THz (  80 nm)

wavelength division multiplexing (WDM)

laser photodet.

transm. fibre

disp. compensat.

opt. amplifier

V F

opt. filter

channels:  ∆f ≈ 5, 10, 25, 50, 100 GHz

capacity:    40 Gbit/s ×××× 100 ch = 4 Tbit/s

Can be further increased by polarization multiplexing and 
higher-order modulation formats.
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Milestones in fiber-optic communications

Christian Koos

• Low-loss fibers (1970’s)
Reduction of loss from 1000 dB/km to below 20 dB/km by  removing impurities, 
suggested in the 1960’s by Charles Kao (Nobel prize 2009)

• Semiconductor lasers operating continuously at room  temperature (1980’s)
Double heterostructure pn-junctions (first GaAs as base material, today mainly 
InP)

• Erbium-doped fiber amplifier (1990’s)
Broadband amplification (1535 - 1565 nm, 4 THz) of tens of channels in 
wavelength-division multiplexing (WDM) systems

Latest developments:
• Coherent communications and digital signal processi ng

Encoding of data on both the amplitude and the phase of the signal by using 
higher-order modulation formats (e.g., quadrature amplitude modulation, QAM); 
compensation of transmission impairments by digital signal processing

• Large-scale photonic integration
Co-integration of various different optical components (lasers, modulators, 
photodetectors, passive devices) on a common chip; this technology is key for 
realizing transmitter and receivers for coherent communications
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Optical Fibre Submarine SystemsInstallation of global optical

communication networks in the 1990s
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Submarine Communication Systems — Laying the Cable 

Christian Koos
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http://en.wikipedia.org/wiki/Submarine_communications_cable

Submarine Communications Cable 
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Data centers … and interconnect bottlenecks!

Facebook‘s data center in Luleå, Sweden: On-line since 06/2013

• More than 90% of all computing, storage, communication will occur within warehouse-
scale data centers

• Internal data traffic much larger than access traffic

www.facebook.com
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Large-scale data centers: The interior

Christian Koos

Scaling of computing and storage by 
massive parallelization: 

~ 40-80 servers per rack,
16 racks per cluster,
~ 100 clusters (100 000 servers) 
per data center

Problem: Network scalability is lagging 
behind
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Network scaling requirements

„Amdahl‘s rule of thumb“: Balanced systems for parall el computing
For every 1 MHz of “processing power” 

… 1 MB of memory
… 1 Mbit/s I/O data rate
… in the late 1960’s …

Christian Koos

In 2011:
6 x 2.5 GHz processors, 2 - 4 cores each
⇒ ~ 30-60 GHz of “processing power”

24-64 GByte memory
But 1 Gbit/s of network bandwidth ???

How to …
… deliver 40 Gbit/s bandwidth to each of 100k servers ?
… deliver 40 Tbit/s to each of 100 clusters ?
… scale up to a 4 Pbit/s network?

⇒ Optical 
interconnects!
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Optical interconnects

Optical communications is moving to short and medium dist ances

http://citrix.cleanrooms.com
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Optical rack-to-rack interconnects: Active optical ca bles

www.luxtera.com

Luxtera Blazar LUX 5010 
4 x 10 Gbit/s Active Optical Cable 
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Optical rack-to-rack interconnects

Optical Switch 

High-performance supercomputer
(IBM Roadrunner)

19 872 processors, 1 Pflop/s

Length: ~ 100 m
No. of links: 5 - 10 k
Bandwidth: ~ 10 Gbit/s per link
Power: 50 mW / (Gbit/s)

Prof. Dr.-Ing. Christian Koos
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Optical board-to-board interconnects

Length: ~ 50 – 100 cm
No. of links: ~ 10 k
Bandwidth: ~ 10 Gbit/s per link
Power: 10 mW / (Gbit/s)

Yurii Vlasov, ’Silicon photonics for next 
generation computing systems’, ECOC 2008

Prof. Dr.-Ing. Christian Koos
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Waveguides in printed circuit boards (PCB)

Yurii Vlasov, ’Silicon photonics for next generation computing systems’, ECOC 2008

Prof. Dr.-Ing. Christian Koos
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Chip-to-chip interconnects

Length: ~ 1 cm
No. of links: ~ 100 k
Bandwidth: ~ 1 Tbit/s per link
Power: < 10 mW / (Gbit/s)

Yurii Vlasov, ’Silicon photonics for next generation 
computing systems’, ECOC 2008

IBM Terabus project

Prof. Dr.-Ing. Christian Koos
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On-chip links

http://domino.research.ibm.com/comm/research_projects.nsf/pages/p
hotonics.index.html

Problem today: 
Performance of computers limited by 
bandwidth and energy consumption  
of electrical interconnects! 

The vision:  10 Tflop/s on a 3D chip
Logic plane: ~ 300 cores
Photonic plane: ~ 70 Tbit/s on chip and off-chip, 

On-chip routing and switching of 
traffic

Prof. Dr.-Ing. Christian Koos
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Research at IPQ – a few examples
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Hillerkuss et al., Nat. Photon. 5, 364–371 (2011)

Previous demonstration: Use frequency 
comb, generated by a mode-locked laser

325 channels, 12.5 GBd, 
16 QAM, PolMUX ⇒⇒⇒⇒ 32.5 Tbit/s

Chip-scale Kerr 
comb generator InGaAsP

pump laser

Nonlinear SiN
microresonator

Transmitter chip: Silicon photonics 
and silicon-organic hybrid (SOH) 
integration

Photonic wire bond

The vision: Chip-scale multi-Tbit/s transceivers

Pfeifle et al., Nat. Photon. 8, 375 - 380 (2014)

Chip-scale transceivers for massively parallel WDM
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8‘‘  ̶  12“ 
(200 ̶  300 mm)

PIC design and fabless fabrication

Christian Koos

Mach-Zehnder 
modulators
(25 Gbit/s)

Germanium 
photodiodes

(up to 40 Gbit/s)

Silicon photonics:
• High-density integration by using high-

index-contrast silicon-on-insulator (SOI) 
waveguides

• Use of CMOS foundries for photonic 
devices

⇒ Multi-project-wafer (MPW) shuttle runs, 
e.g., ePIXfab (http://www.epixfab.eu/) or 
OpSIS (http://opsisfoundry.org/) 

2

Si, n = 3.48

SiO2, n = 1.44

Si substrate
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Silicon-organic hybrid (SOH) integration

Christian Koos
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Concept: Combine nanophotonic silicon waveguides with 
electro-optic organic cladding materials
• High-speed modulation: 3 dB bandwidth > 100 GHz (All-

silicon devices: 30 GHz)
• Highly efficient: UπL < 1 Vmm (All-silicon devices: UπL = 10 

… 40 V mm)
• Lowest energy consumption of a Mach-Zehnder modulator

(MZM) in any material system: 
< 2 fJ/bit (All-silicon MZM devices: 200 fJ/bit)

• No amplitude-phase coupling: Enables higher-
order modulation formats (16 QAM)

Palmer et al.; ECOC 2013, paper We.3.B.3 – Best student paper award
Alloatti et al., Opt. Express 19 (12), 11841-11851 (2011)
Palmer et al., IEEE Photonics Journal 5, 6600907 – 6600907 (2013)
Korn et al., Opt. Express 21; 13219–13227 (2013)
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3D photonic integration and photonic wire bonding

Electronic wire bonding: Stacked-die package
• Automated fabrication (10’s of connections per 

second)
• Small pitch (down to 30 µm with 15 µm wire 

diameter)
• ± 2 µm bond placement accuracy
• Tight control of the loop trajectory 

Picture source: Kulicke & Soffa, http://www.kns.com/

Photonic wire bonding: Replace metallic wire 
by a 3D freeform polymer waveguide

• No high-precision/active alignment required
• High interconnect density
• Fast fabrication

Lindenmann et al., Opt. Express 20, 
17667-17677 (2012)
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KIT Photonic Fab 
@ Institute of Microstructure Technology (IMT)

Christian Koos

• In-house fabrication processes for rapid prototyping based on 
electron-beam lithography

Silicon and silicon-nitride PIC and plasmonic devices
• Technology base: Karlsruhe NanoMicro Facility (KNMF)

Fully equipped cleanroom (500 m²) comprising state-of-the-art 
nanofabrication tools

Reactive Ion Etching:
Oxford Plasmalab System 
100 with ICP 380 source

Thin-film deposition
tbd.

Electron-beam lithography:
Vistec VB6 (100 kV)

Next steps:
• Completion of available process portfolio by thin-film layer growth
• Involvement of further (IMT) personnel
• Definition and development of reproducible fabrication processes for rapid prototyping of 

PIC and plasmonic devices
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Plasmonic-organic hybrid (POH) devices

Christian Koos

Manipulation of light on a 
nanometer scale

Metal slot-waveguide 
modulator

BPSK @ 40 GBd

Melikyan et al., Nature Photonics 8, 229–233 (2014) 
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Applications in Optical Metrology

Christian Koos

Interferometer and detectors integrated on silicon � 40 dB dynamic range over 5 mm depth
Schneider et al., CLEO Conference, San Jose, USA, ATu2P.4 (2014)

Silicon Photonic Optical Coherence Tomography

Chip-scale heterodyne interferometer

Silicon Photonic Distance Metrology

-

-

• Standard deviation below 5 µm
• Acquisition time 14 µs Weimann et al., CLEO Conference, San Jose, USA, STh4O.3 (2014)
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Applications in Biophotonics

Christian Koos

Grossmann et al., Appl. Phys. Lett. 96 (2010)
Q � 1.3 ∙ 107 (� � 630 nm)
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Selective label-free detection of biomolecules

U. Bog et al., Small in print (2014)

Parallel functionalization
of whole micro-goblet
chip using array of
phospholipid spots on
glass stamp

Goblet chip

Lipid spot

Stamp

Polymer microgoblet lasers Sensing with Whispering-Gallery 
Mode (WGM) resonators:

• Coupling to functionalized 
resonator surface

• Detection by shift of resonance 
frequency 

• High-Q resonators 

⇒ Low detection limits, i.e., single     
virus, nanoparticle
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Fundamentals of Wave Propagation in Optics
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Maxwell‘s equations and constitutive relations

Basic assumptions:
• No free charges, no currents (if needed, they are treated by a complex 

dielectric permittivity…)
• Nonmagnetic material
• Linear material (for now…)

Frequency-domain quantities: Either 
Fourier transforms or complex amplitudes 

of time-harmonic quantities

Christian Koos
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Frequency-domain quantities and dielectric suscepti bility

Fourier transformation:

Complex amplitude of a time-harmonic quantity:

Dielectric susceptibility of a linear medium:

Time domain: Convolution with a 
(causal) influence function

Frequency domain: Multiplication with a 
complex transfer function

Note: In optics, the term “linear medium” denotes a material, for which the polarization P
depends linearly on the electric field E.

Christian Koos

Note: For linear media materials, Maxwell’s equations take the same form for Fourier 
transforms and complex time-domain amplitudes. In nonlinear optical media, the two 
quantities must be carefully distinguished!
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Constitutive relations and complex refractive index

Complex dielectric constant and refractive index :

Complex dielectric constant and refractive index :

Christian Koos

Convention: Positive
values of ni (ǫri) are 
assigned to lossy media, 
negative values 
correspond to optical gain! 
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Basic relations of vector calculus

Rade / Westergren, Mathematische Formeln, Springer

Christian Koos
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Wave equation and plane waves

General form:

Weakly inhomogeneous media: ǫ can be assumed constant within 
distances of the order of a wavelength

Solution for homogeneous media: Plane waves

where

where

Christian Koos
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Properties of plane waves

Christian Koos

• k, E0, and H0 are mutually connected and form an orthogonal right-
handed system:

• The attenuation of a plane wave is linked to the imaginary part ni of the 
complex refractive index. For a plane wave propagating in positive z-
direction, the power decays as e-αz , where the attenuation constant α is 
given by

Rade / Westergren, Mathematische Formeln, Springer

Note: A positive value of ni corresponds to a positive attenuation 
coefficient α and therefore to optical loss.
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Kramers-Kronig relations

Christian Koos

Recall: The complex susceptibility is the Fourier transform of a causal
influence function in time domain

As a consequence, the real and the imaginary part of the complex 
susceptibility are connected by the Hilbert transform,

Making further use of the fact that χ(t)  is real, the Kramers-Kronig relations
can be derived,

“Cauchy principal value”, i.e., the 
integration boundaries must 
approach the singularity 
“symmetrically” from both sides. 
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Kramers-Kronig relations - discussion

Christian Koos

• The refractive index of a medium can be calculated from its absorption 
spectrum and vice versa. Absorption and dispersion are intimately 
related by fundamental principles. 

• An “ideal” dispersionless lossless medium cannot exist:
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Lorentz oscillator model of bound charges

Christian Koos

Equation of motion for bound charges:

Complex electric susceptibility:

E
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Refractive index and absorption

Adapted from Saleh, B. E. A. & 
Teich, M. C. (2007), 
Fundamentals of Photonics, John 
Wiley & Sons, Hoboken, NJ.

Christian Koos

Real media often have several resonances, each of which contributes to the refractive 
index and to the absorption: 

Refractive index and absorption near a resonance:
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X-ray lenses

At very high frequencies ( ωωωω >> ωωωωrrrr): 

n < 1 
⇒ Focussing lenses must have 

concave form!

n very close to 1 (1 - n ≈ 10-6) 
⇒ Needs lots of lenses to obtain 

sufficient refraction.

X-ray beam

Christian Koos
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Free charges

Christian Koos

Equation of motion / complex susceptibility of bound charges:

Free charges: Restoring force vanishes, i.e., ωr = 0:

Discussion:
ω < ωp: n and k are purely imaginary, i.e., the wave is attenuated and cannot 

propagate within the material (“forbidden band”)
ω > ωp: n and k are purely real, i.e., the metal behaves like a lossless dielectric with 

unique dispersion characteristics (“plasmonic band”)

Adapted from Saleh, B. E. A. & 
Teich, M. C. (2007), Fundamentals 
of Photonics, John Wiley & Sons, 
Hoboken, NJ.

Back to metal-
clad slab 
waveguide…
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Lorentz oscillator model of bound charges

Christian Koos

Equation of motion for bound charges:

Complex electric susceptibility:

E
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Refractive index and absorption

Adapted from Saleh, B. E. A. & 
Teich, M. C. (2007), 
Fundamentals of Photonics, John 
Wiley & Sons, Hoboken, NJ.

Christian Koos

Real media often have several resonances, each of which contributes to the refractive 
index and to the absorption: 

Refractive index and absorption near a resonance:
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Sellmeier equations

Prof. Dr.-Ing. Christian Koos

Complex electric susceptibility far from resonance (|ωr - ω| >> γr):

where

⇒ χ is approximately real, absorption is small. Contributions from multiple 
resonances lead to so-called Sellmeier equations:

For Sellmeier coefficients χ0ν and λν, see reference books on optical 
materials or material databases, e.g., 

• Palik, E. D. (1998), Handbook of Optical Constants of Solids, Academic 
Press, San Diego, CA

• The Landolt Börnstein Database,
http://www.springermaterials.com/navigation/
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Sellmeier coefficients of various materials

Prof. Dr.-Ing. Christian Koos

Saleh, B. E. A. & Teich, M. C. (2007), Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ.
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Wavelength-dependent refractive index for fused silica

Saleh, B. E. A. & Teich, M. C. (2007), Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ.

Christian Koos

n

ng

Mλ

Normal GVD
Anomalous

GVD

Wavelength-dependent 
refractive index 
⇒ Different spectral 

components of a time-
dependent signal travel at 
different group velocities.

⇒ Deformation of signal shape 
due to dispersion.
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Pulse propagation in dispersive media

Dispersive Medium

z

Christian Koos

Propagation:

Taylor expansion of propagation constant:

where

Slowly varying
envelope
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Group and phase delay

Prof. Dr.-Ing. Christian Koos

t

A(0,t) A(0,t-βc
(1) z)
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Group velocity dispersion (GVD)

Prof. Dr.-Ing. Christian Koos

Saleh, B. E. A. & Teich, M. C. 
(2007), Fundamentals of 
Photonics, John Wiley & Sons, 
Hoboken, NJ.
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Dispersive broadening of a Gaussian Impulse

Prof. Dr.-Ing. Christian Koos

Normal GVD

Anomalous GVD

Figure adapted from: Saleh, B. E. A. & Teich, M. C. (2007), Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ.

Problem set: Quantitative analysis
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Dispersive properties of fused silica

Prof. Dr.-Ing. Christian Koos

• Group velocity dispersion (GVD) :
• Normal GVD below ~ 1.3 µm: 

dng/dω > 0, dng/dλ < 0, Mλ < 0
• Anomalous GVD below ~ 1.3 µm: 

dng/dω < 0, dng/dλ > 0, Mλ > 0

• “Zero material dispersion wavelength “ 
λ ≈ 1.3 µm: Really zero dispersion?

n

ng

Mλ

Figure adapted from: Saleh, B. E. A. & Teich, M. C. (2007), 
Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ.

Normal GVD
Anomalous

GVD



Institute of Photonics 

and Quantum Electronics
52 21.10.2014 Prof. Max Mustermann - Title

Optical Slab Waveguides
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Dielectric slab waveguides

Prof. Dr.-Ing. Christian Koos

Ray-optics picture of a dieletric slab waveguide cannot explain a number of import 
effects, e.g. the formation of waveguide modes
⇒ Electromagnetic model needed
Procedure:

• Reflection from plane dielectric boundary
• Lateral self-consistence and formation of modes
• Waveguide dispersion
• Extension to 3D geometries

Total internal 
reflection (TIR)

Figure adapted from: Saleh, B. E. A. & Teich, M. C. (2007), 
Fundamentals of Photonics, John Wiley & Sons, Hoboken, NJ.
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Plane dielectric boundary: Plane-wave ansatz

Prof. Dr.-Ing. Christian Koos

incident reflected

transmitted
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Boundary conditions for E- and H-field

Prof. Dr.-Ing. Christian Koos

incident
subscript “i”

reflected,
subscript “r”

transmitted, 
subscript “t”

Unit vector normal 
to interface plane.
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TE- and TM-polarization

Prof. Dr.-Ing. Christian Koos

Strategy: Consider boundary conditions separately for two orthogonal linear 
polarizations! Any other polarization can be interpreted as a superposition 
of the two cases.

Transverse-electric wave (TE): 

Transverse-magnetic wave (TM): 
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Snell’s law and law of reflection

Prof. Dr.-Ing. Christian Koos
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Reflection and transmission coefficients

Prof. Dr.-Ing. Christian Koos
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Power transmission and reflection

Prof. Dr.-Ing. Christian Koos

Saleh, B. E. A. & Teich, M. C. (2007), 
Fundamentals of Photonics, John Wiley & Sons, 
Hoboken, NJ.

Plane boundary 
between air (n1 = 1) and 
GaAs (n2 = 3.6)

Brewster angle:
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Total internal reflection (TIR)

Prof. Dr.-Ing. Christian Koos

Limiting angle for total internal 
reflection:

i.e., Et is evanescent in x-direction
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Reflection factors for TIR

Prof. Dr.-Ing. Christian Koos

TE:

TM:

Combined:
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Field distribution

Prof. Dr.-Ing. Christian Koos
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Rays and plane waves in slab waveguides

Christian Koos

A

BC

D

ϑ

ϑ

h

n1

n2

n2

E

ϑϑ

• Necessary for total internal reflection: ϑ > ϑ1T

• In addition: Only discrete angles of ϑ are permitted

ϑ

Consider phase shifts along the rays AB and CD:

where

Permitted propagation angles ϑ defined by implicit equation:

Total internal reflection, 
phase shift ϕp

Conditions for guidance of light:
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The slab waveguide – an intuitive approach

Lateral self-consistence:

Prof. Dr.-Ing. Christian Koos
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Eigenvalue equations for TE and TM modes

Prof. Dr.-Ing. Christian Koos

Define:

Consistency condition:

Eigenvalue equations for TE and TM:

Transverse core 
phase constant

Transverse cladding 
attenuation

Normalized 
frequency

Numerical 
aperture

Mode propagation constant
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Discussion: Modes of a slab waveguide

Prof. Dr.-Ing. Christian Koos

• TE-modes have a always a larger β (smaller u) than the corresponding TM-modes. 

• There is no lower cut-off frequency, i.e., the symmetric slab waveguide supports always at 
least one guided TE- and one guided TM-mode.

• For weak guidance, n1 ≈ n2 and σTM ≈ 1. The β-values for TM-modes and TE-modes 
approach each other asymptotically.

• The smaller V, the less modes are guided. 
Fundamental modes (m = 0) have the largest 
possible β (the smallest possible u).

• For V < π/2, there is only one guided TE and 
one guided TM mode. The waveguide is 
called single-mode.

TMTE
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Dispersion relations

Prof. Dr.-Ing. Christian Koos

Weak guidance: ∆≪1, σTM ≈1

Transverse cladding attenuation:

Normalized frequency:

Normalized propagation constant:

Transverse core phase constant:

Mode propagation constant: Note: 
TE = “H-wave”
TM = “E-wave”
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Guided modes of the dielectric slab waveguide

Prof. Dr.-Ing. Christian Koos

Field patterns of guided modes do not change during propagation along z!
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A more general approach: 
Modes of z-invariant optical structures

Prof. Dr.-Ing. Christian Koos

Lossless z-invariant dielectric structure 
(“lossless homogeneous waveguide”):

n = n(x,y)

where Im{n} = 0 throughout space.

Eigenmodes: A lossless homogenous 
waveguide features a set electromagnetic 
wave patterns which do not change their 
transverse shapes during propagation 
along z, so-called eigenmodes:

Classification of eigenmodes:
• Real or imaginary β ?
• Mode fields confined to the 

waveguide core?
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Propagating and evanescent eigenmodes

Christian Koos

n3

n2 > n3

n3

n2Okamoto, 
Fundamentals of
Optical Waveguides

• Propagating eigenmodes are associated with a real propagation constant β and a 
real effective refractive index ne, whereas for so-called evanescent eigenmodes, β
and ne are purely imaginary 

• For propagating eigenmodes, the propagation constant obeys

where n1 is the maximum index in the waveguide cross section
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Guided modes and radiation modes

Christian Koos

n3

n2 > n3

n3

n2Okamoto, 
Fundamentals of
Optical Waveguides

• Guided modes form a discrete set with propagation constants in the range

where n2 denotes the maximum refractive index in the cladding region.

• For guided modes, the propagation constant β is real, and the fields are 
confined to the waveguide core,

• For radiation modes, fields extend to infinity. Radiation modes form continuous 
sets and show an oscillatory behaviour to at least one side of the waveguide.

in 3D!
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A more general approach: 
Modes of z-invariant optical structures

Prof. Dr.-Ing. Christian Koos

Lossless z-invariant dielectric structure 
(“lossless homogeneous waveguide”):

n = n(x,y)

where Im{n} = 0 throughout space.

Eigenmodes: A lossless homogenous 
waveguide features a set electromagnetic 
wave patterns which do not change their 
transverse shapes during propagation 
along z, so-called eigenmodes:

Classification of eigenmodes:
• Real or imaginary β ?
• Mode fields confined to the 

waveguide core?
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Guided modes: Maxwell’s equations for the mode fiel ds

Prof. Dr.-Ing. Christian Koos

Slab 
waveguide:

Separation of modes:

Mode ansatz:
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Wave equation for the lateral mode fields

Prof. Dr.-Ing. Christian Koos

= n3

= n2

= n3

= n2

TE

TM

Okamoto, Fundamentals of Optical Waveguides
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TE mode solution

Prof. Dr.-Ing. Christian Koos

Ansatz for Ey-component:

Corresponding Hz-component:

Hz must be continuous at x = ±a
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TE mode solution

Prof. Dr.-Ing. Christian Koos

Eigenvalue equations for β and ϕ:

Numerical solution of eigenvalue equation: New parameters V, γ, B

Normalized frequency

Asymmetry parameter

Normalized propagation
constant

…back to channel waveguide analysis
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Numerical solution of eigenvalue equation for TE

Prof. Dr.-Ing. Christian Koos

Okamoto, Fundamentals of Optical Waveguides

B

f(
B

)

V

B

f(B)
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Slab waveguide

Prof. Dr.-Ing. Christian Koos

n1 = 3.38 
n2 = 3.17 
n3 = 1

γ = 6.6

V = 4

Okamoto, Fundamentals of Optical Waveguides

= n3

= n2
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Eigenvalue equation for TM modes

Prof. Dr.-Ing. Christian Koos

n1 = 3.38 
n2 = n3 = 3.17 

Propagation constant for the TM 
mode is smaller than for the TE 
mode, i.e., TE is better confined to
the core.

Similar derivation as in TE case:

Okamoto, Fundamentals of Optical Waveguides
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Summary: Calculating guided modes of slab waveguide s

Prof. Dr.-Ing. Christian Koos

• Frequency ω

• Waveguide parameters n1, n2, 
n3, a

• Normalized frequency V

• Asymmetry parameter γ

• Normalized propagation
constans Bm for different 
modes (mode index m)

Numerical solution of
eigenvalue equation

• Transverse phase
constant um / cladding
attenuation wm, w‘m

• ϕm, βm, k1x,m, k2x,m
(i) , 

k3x.m
(i)

• Field plots

• Dispersion relation for 
each mode: βm = βm(ω),

Repeat for different 
frequencies ω
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Radiation modes of an asymmetric slab waveguide

Christian Koos

For asymmetric slab waveguides:
• Substrate mode: Oscillatory behaviour in the substrate only, evanescent in

the cladding

• Cover mode: Oscillatory behaviour in both substrate and cover:

Okamoto, 
Fundamentals of
Optical Waveguides

Propagating radiation modes can be thought of as
plane waves impinging of the waveguide structure from
outside. These modes show an oscillatory behaviour to
at least one side of the waveguide structure.

n1n2 n3 n1n2 n3

= n3

n2

n3 < n2

n3 < n2

n2
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Radiation modes of an asymmetric slab waveguide

Christian Koos

Note: The external plane waves associated with the radiation modes can have
any propagation direction.
⇒ In contrast to guided modes, propagating radiation modes form continuous

sets with propagation constants

n3 < n2

n2

n1

n3 < n2

n2

n1

n3 < n2

n2

n1

n3 < n2

n2

n1

µ = 1 µ = 2

Guided mode Radiation mode („substrate mode“)

Radiation mode
(„cover modes“)

Chen, Guided Wave Optics
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Evanescent radiation modes

Christian Koos

Evanescent radiation modes decay exponentially in the direction of propagation.
These modes have purely imaginary propagation constants β and large wave
vector components in the transverse direction

Such modes are, e.g., needed to describe the fine structure of the field in the
vicinity of a sub-wavelength waveguide imperfection.

Propagation constants ββββ for guided modes and radiation modes in the 
complex plane (symmetric slab waveguide):

Marcuse, Light transmission optics
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Dispersive Medium

Signal propagation in dispersive waveguide

n2

z

Prof. Dr.-Ing. Christian Koos

Propagation:

Taylor expansion of mode propagation constant:

where

n1

n3

Slab waveguide:

Propagation in a single waveguide mode: Same description as for dispersive
homogeneous medium.
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Propagation in a single waveguide mode: 
Group and phase delay

Prof. Dr.-Ing. Christian Koos

t

A(0,t) A(0,t-βc
(1) z)

Group delay
Phase delay
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Intermodal dispersion 

Prof. Dr.-Ing. Christian Koos

• Multimode propagation: Signal can propagate in different modes, all 
featuring different group velocities
⇒ Intermodal dispersion / (Inter-)Modendispersion

m = mode index
Different modes experience different group delays, 
i.e., different slopes of the dispersion relation β=β(ω)

Example: Symmetric slab waveguide
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Polarization mode dispersion 

Prof. Dr.-Ing. Christian Koos

• For “single-mode” waveguides: Still, two polarizations can propagate; the 
fundamental TE and TM mode have different dispersion relations
⇒ Polarization mode dispersion (PMD)

Polarisationsmodendispersion

Okamoto, Fundamentals of Optical Waveguides
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Intramodal dispersion 

Prof. Dr.-Ing. Christian Koos

• If only one polarization is excited, the wavelength-dependence of the group 
velocity remains
⇒ Intramodal dispersion / Intramodendispersion

= Group velocity dispersion (GVD) / Gruppengeschwindigkeitsdispersion
= Chromatic dispersion / Chromatische Dispersion

Two contributions to chromatic dispersion :
1. Material dispersion Mλ: Frequency dependence of the material’s refractive 

indices 

2. Waveguide dispersion Wλ: Boundary conditions in waveguide lead to 
frequency dependence of the modal propagation constant

For weakly guided modes:
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Interplay of material and waveguide dispersion

Christian Koos

Eigenvalue equations: γγγγ = 0 (symmetric waveguide)

TE:

TM:

⇒ Identical (nearly identical) normalized propagation constants for TE (TM) 
in both waveguides!
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Example (see problem set): 
Interplay of material and waveguide dispersion

Christian Koos

⇒ Nearly identical 
normalized dispersion 
relations for both 
waveguides!

But: Dispersion 
characteristics differ 
quite significantly!

WG 1 WG 2 
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Interplay of material and waveguide dispersion

Christian Koos

Material dispersion M

Total chromatic 
dispersion C for WG 1 
(weakly guiding)

Total chromatic 
dispersion C for WG2 
(strongly guiding)

Waveguide dispersion 
W for WG 1 (weakly 
guiding)

Waveguide dispersion 
W for WG2 (strongly 
guiding)

Zero material-dispersion 
wavelength λ

Zero-dispersion wavelength λ 

of WG 1 (weakly guiding)
Zero-dispersion wavelength λ 

of WG 2 (strongly guiding)
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A Short Visit to Plasmonics
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Metal-clad slab waveguide

Christian Koos

n1 = 1.5884

n2 = 1.5133

n3 = 0.065 - 4j

Chen, Guided Wave Optics

λ = 1.55 µm

Extinction coefficient

Real metal:
• Bound + free charges
• Damping of electron motion
=> Komplex ǫr:

Ideal metal:

Susceptibility of metals
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Modes of metal-clad slab waveguide

Christian Koos

B

α
/k

0

n1 = 1.5884

n2 = 1.5133

n3 = 0.065 - 4j

λ = 1.55 µm

Chen, Guided Wave Optics

For most modes:
• B-V-curves have essentially same shape as for 

dielectric slab waveguide
• TM-modes have larger loss than TE-modes
• Loss coefficient peaks slightly above the cutoff 

frequency and then decreases with frequency
Exception: TM0-mode
• Propagation constant is nearly independent of 

frequency
• High attenuation, independent of frequency
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Mode fields of metal-clad slab waveguide

Christian Koos

TE0

TE1

TE2

TM0

TM1

TM2

Strong confinement to the metal-dielectric interface! 
⇒ Surface plasmon polariton (SPP) mode
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First-principle derivation of SPP modes

Christian Koos

Ansatz for TM mode confined to the metal-
dielectric boundary:

metal, ǫm

dielectric, ǫd

where

Corresponding electric mode field:
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First-principle derivation of SPP modes

Christian Koos

Continuity of Ez at x =0 leads to the dispersion relation of the SPP:

The lateral decay constants are given by:

A localized propagating solution requires real β, kmx
(i), and kdx

(i) , i.e., 

Recall:

=> Ex must change sign at x = 0:
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|β| [nm-1]

Dispersion relations of surface plasmonpolaritons (SPP)

Christian Koos

SPP dispersion relation for Ag/SiO2 interface based on free-electron gas dispersion model:

Bound SPP mode

No propagation, evanescent 
along the interface

Radiative modes

|β| [nm-1]

SPP dispersion relation for Ag/SiO2 interface based on real material data:

Bound SPP mode

No propagation, evanescent 
along the interface

Radiative modes

Adapted from Dionne et al., 
Phys. Rev. B 72, 075406 (2005) 
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Penetration depths and propagation loss of SPP

Christian Koos

Complex dielectric constants of the metal:

where usually

⇒ Complex propagation constant: 

where (without derivation):

Discussion:
• Lateral penetration depths can be much smaller than the vacuum wavelength 

=> Ultra-compact devices
• Surface plasmons can in principle be lossless if ǫrm is real! SPP propagation 

loss is only a consequence of “imperfect” material properties of the metal!
• Propagation distances Lp = (2β i)-1 are of the order of tens of microns
• Loss reduction by asymmetric coupled surface plasmons propagating along the 

surfaces of a thin metal film

Lateral penetration depths:

(metal)

(dielectric)
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Long-reach coupled surface plasmonspolaritons

Christian Koos
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First-principle derivation of SPP modes

Christian Koos

Ansatz for TM mode confined to the metal-
dielectric boundary:

metal, ǫm

dielectric, ǫd

where

Corresponding electric mode field:
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First-principle derivation of SPP modes

Christian Koos

Continuity of Ez at x =0 leads to the dispersion relation of the SPP:

The lateral decay constants are given by:

A localized propagating solution requires real β, kmx
(i), and kdx

(i) , i.e., 

Recall:

=> Ex must change sign at x = 0:
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|β| [nm-1]

Dispersion relations of surface plasmonpolaritons (SPP)

Christian Koos

SPP dispersion relation for Ag/SiO2 interface based on free-electron gas dispersion model:

Bound SPP mode

No propagation, evanescent 
along the interface

Radiative modes

|β| [nm-1]

SPP dispersion relation for Ag/SiO2 interface based on real material data:

Bound SPP mode

No propagation, evanescent 
along the interface

Radiative modes

Adapted from Dionne et al., 
Phys. Rev. B 72, 075406 (2005) 



Institute of Photonics 

and Quantum Electronics
104 21.10.2014

Applications of SPP: Bionsensing

Christian Koos

• Excitation of SPP on top 
surface of the metal for a 
specific wavenumber β.
⇒ Dip in the reflected 

angular spectrum 
• Molecular adsorption on 

the top surface shifts the 
angle of minimum 
reflection

• Highly sensitive due to 
high intensity of SPP 
mode close to the metal 
surface

Commercial Product: Biacore, https://www.biacore.com

Analyte

Figure adapted from www.wikipedia.org

ββββ
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Planar Integrated Waveguides

2

Si, n = 3.48

SiO2, n = 1.44

Si substrate

SiO2
n = 1.44

SiOxNy, n = 2.01

3 µm



Institute of Photonics 

and Quantum Electronics
106 21.10.2014

Integrated waveguides

Prof. Dr.-Ing. Christian Koos

n1

w

h

n2

n1

w

h

n2

n3

Channel waveguide Strip waveguide

n1

w

h

n2

n3

Rib waveguide
w

h

n2

n3

Ridge waveguide

n1

hslab

n4
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Integrated waveguides

Prof. Dr.-Ing. Christian Koos

w n2

n3

n1
h

Diffused waveguides Multilayer waveguides

n2

n1

n5

…
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Guided modes of rectangular channel waveguides: 
Marcatili method

Prof. Dr.-Ing. Christian Koos

Marcatili et al., 
Bell Syst. Tech. Journ. 48: 2071 – 2102 (1969)

n1 n2
n2

n2

n2

Assumptions :

• Low index contrast: n1/n2 ≈ 1

• Electromagnetic field in the shaded 
areas can be neglected (field 
strongly confined to the core)

• Guided fields can be separated in 
two mode families:

Solution strategy: 
• Start from Maxwell’s equations for Ex (Ey) modes 

and express all field components by Hy (Hx)
• Use mode ansatz for Hy (Hx), derive other field 

components and match boundary conditions at 
the core-cladding interfaces
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Maxwell’s equations for E x-modes

Prof. Dr.-Ing. Christian Koos

Ex-modes:
Hx = 0
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Field components

Christian Koos

Ex-modes:  
Express all field components by Hy

Ey-modes:  
Express all field components by Hx
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Wave equation for dominant components

Christian Koos

Ex-modes:  

Ey-modes:  

… within homogeneous core and cladding regions

Mode-field ansatz for E x-modes: 
Symmetry => Consider first quadrant only
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Relative magnitudes of field components for E x-modes

Christian Koos

For low index contrast:   

Eliminate β :   

Magnitudes of field components:   

where

Conclusion: Match boundary conditions for Ez and Hz, ignore Ey!
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Longitudinal field components of E x-modes

Prof. Dr.-Ing. Christian Koos

Calculate longitudinal field components:



Institute of Photonics 

and Quantum Electronics
114 21.10.2014

Dispersion relations for Ex modes

Prof. Dr.-Ing. Christian Koos

Numerical solution:
• Insert

into dispersion equations and solve for k 1x and k 1y

• The propagation constant is obtained by:
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Ey modes

Prof. Dr.-Ing. Christian Koos

Similar derivation as for Ex-modes …

Dispersion equation of
conventional slab waveguide
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Slab waveguide interpretation of Marcatili method: E x

Prof. Dr.-Ing. Christian Koos

y

2a

x

y

n1n2 n2

n1

n2

n2

Equivalent horizontal 
slab waveguide

Equivalent vertical 
slab waveguide

TM-mode, 
mode index m = p - 1

TE-mode, 
mode index m = q – 1

x
n1

n2

2a

2d
1 2

3

Equivalent to slab 
waveguide eigenvalue 

equations derived earlier!



Institute of Photonics 

and Quantum Electronics
117 21.10.2014

Ex-modes of a channel waveguide

Prof. Dr.-Ing. Christian Koos

Number of 
intensity maxima 

in x-direction Number of 
intensity maxima 
in y-direction

Dominant E-field 
component

= (quasi-)TE mode

n1 = 1.5; n2 = 1.45, width: 2a = 20 µm, height: 2d =10 µm, λ = 1.55 µm
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Slab waveguide interpretation of Marcatili method: E y

Prof. Dr.-Ing. Christian Koos

x

y

n1

n2

2a

2d

x

y

n1n2 n2

n1

n2

n2

equivalent horizontal 
slab waveguide

equivalent vertical 
slab waveguide

TE-mode, 
mode index m = p - 1

TM-mode, 
mode index m = q - 1

1 2

3

Equivalent to slab waveguide 
eigenvalue equations derived earlier!
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Ey-modes of a channel waveguide

Prof. Dr.-Ing. Christian Koos

Number of 
intensity maxima 

in x-direction Number of 
intensity maxima 
in y-direction

Dominant E-field 
component

= (quasi-)TM mode

n1 = 1.5; n2 = 1.45, width: 2a = 20 µm, height: 2d =10 µm, λ = 1.55 µm
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Guided modes of rectangular channel waveguides: 
Marcatili method

Prof. Dr.-Ing. Christian Koos

n1 n2
n2

n2

n2

Assumptions :
• Low index contrast: n1/n2 ≈ 1
• Electromagnetic field in the shaded 

areas can be neglected (field 
strongly confined to the core)

• Guided fields can be separated in 
two modes:

Ansatz for E x-modes :
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Slab waveguide interpretation of Marcatili method: E x

Prof. Dr.-Ing. Christian Koos

y

2a

x

y

n1n2 n2

n1

n2

n2

Equivalent horizontal 
slab waveguide

Equivalent vertical 
slab waveguide

TM-mode, 
mode index m = p - 1

TE-mode, 
mode index m = q – 1

x
n1

n2

2a

2d
1 2

3

Equivalent to slab 
waveguide eigenvalue 

equations derived earlier!
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Ex-modes of a channel waveguide

Prof. Dr.-Ing. Christian Koos

Number of 
intensity maxima 

in x-direction Number of 
intensity maxima 
in y-direction

Dominant E-field 
component

= (quasi-)TE mode

n1 = 1.5; n2 = 1.45, width: 2a = 20 µm, height: 2d =10 µm, λ = 1.55 µm
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Effective-index method

Prof. Dr.-Ing. Christian Koos

Assume:
• Low index contrast, n1/n2 ≈ n1/n3 ≈ 1, i.e. wave equations for weakly inhomogeneous 

media can be used, 

• Horizontal waveguide dimensions larger than vertical dimensions, w >> h1,2

w

h1
h2

n2

n3

n1



Institute of Photonics 

and Quantum Electronics
124 21.10.2014

Effective-index method

Prof. Dr.-Ing. Christian Koos

h1
h2

n2

n3

n1

w

F(x1,y)

slab 1 slab 2 slab 3

nes1 nes2 nes3

x

y zG(x)
x

y y

F(x2,y)

Local y-dependence, slow 
variations in x Fast variations 

in x
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Effective index method

Prof. Dr.-Ing. Christian Koos
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Example: E x-modes of a rib waveguide

n3 = 1.44

n1 = 1.5

w = 3 µm n2 = 1.44
h1 = 2 µm

h2 = 1 µm

x

y

nes2 = 1.4633 

Slab waveguide solver: http://www.computational-photonics.eu/oms.html

nes2 = 1.4633 
nes1 = 

1.4809 

“TE”

“TM” ne = 1.4737 

λ = 1.55 µm

Reference: Numerical solution
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Example: E x-mode of a channel waveguide

InGaAsP
n1 = 3.55

w = 2 µm

InP
n2 = 3.17

h = 0.2 µm

x

y

nes1 = 3.17 nes3 = 3.17 nes2 = 3.2788 

“TE”

“TM” ne = 3.2649 

λ = 1.55 µm

Accuracy ?

Reference: Numerical solution

Slab waveguide solver: http://www.computational-photonics.eu/oms.html
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n1 n2
n2

n2

n2

Prof. Dr.-Ing. Christian Koos

Accuracy: Comparison of different methods

• Semi-analytical methods are accurate 
far above cutoff.

• Near cutoff, the fields are not well 
confined to the core; the basic 
assumptions for the analytical methods 
are hence not any more fulfilled.

• Marcatili’s method tends to 
underestimate the propagation 
constant, whereas the effective-index 
method tends to overestimate it.Chen, Foundations for Guided Wave Photonics

Marcatili

Effective-
index method

FEM

w = 2h

w

h
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Numerical Mode Solvers

General procedure:

• Choice of a finite computational domain
• Discretization of refractive index profile
• Discretization of field equations
• Numerical solution of resulting linear 

system of equations / eigenvalue problem

n1 = 1.5

n2 = 1.44

Numerical mode solvers come with most 
commercial software packages for 
electromagnetic field simulations:

• Rsoft, Ossining, NY, BEAMProp, 
http://www.rsoftdesign.com

• CST, Darmstadt, Microwave Studio, 
http://www.cst.de

• Photon Design, Oxford, UK, FIMMwave
http://www.photond.com/

• Ansoft, Pittsburgh, HFSS http://www.ansoft.com

… and many more …
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Finite-Difference Method

• Start from vectorial or scalar mode field equation (for weakly inhomogeneous 
media)

• Refractive index profile is sampled at discrete grid points that may or may not 
be equidistant

Uniform grid: 
∆ x, ∆ y do not vary 
throughout the 
computational 
domain

Nonuniform grid: 
∆ x, ∆ y are locally 
adapted to the 
structure

• Derivatives are replaced by finite differences
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Finite-Difference Method

x

y
xp xp+1

∆ x

yq

∆ y

p = 1 … P

yq+1

q = 1 … Q
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Finite-Difference Method

Discrete approximation of second-order partial derivatives:

Discretized mode field equation :

Formulation as a linear eigenvalue problem:

[PQ,1]-vector 
(eigenvector)

[PQ,PQ]-matrix Propagation constant 
(eigenvalue)

⇒ To be solved numerically
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Termination of computational domain

x

y

xP

Problem: Field quantities at the edges of the computational domain are related 
to unknown field quantities outside this area.

Outside the computational 
domain!

Note: Simply setting ΨP+1,q = 0 is  not a good 
solution! This would be equivalent to 
terminating the computational domain 
with a perfect (metallic) reflector!

Goal: Domain boundary should be transparent 
for outgoing waves!
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Termination of computational domain

xP

Perfectly matched layers (PML) Transparent boundary conditions (TBC)

Note: Wave impedance of absorber must be 
matched to impedance of the 
computational domain to prevent back-
reflection from the surface 

Artifical absorbing 
material

Drawbacks:
• Adjustment of PML parameters crucial
• Requires extension of computational domain 

to incorporate PML

Ψ = 0 outside 
computational domain

• Assumption: Field near the boundary 
behaves like an outgoing plane wave

• Parameters (amplitude, direction) are 
determined via some heuristic algorithm

• Plane-wave assumption allows to estimate 
the field values outside the computational 
domain.
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Finite-Element Method

The finite element method does not start from the wave equations directly, but 
from a related problem that is based on the minimization of an integral expression 
over the computational domain.

Example: It can be shown* that solving the scalar wave equation,

is mathematically equivalent to minimizing a functional of the form

= 0 
for Dirichlet or Neumann boundary conditions

*Kawano, Kitoh et al., Optical 
Waveguide Analysis, Wiley, 2001
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Finite-Element Method

Further steps:
• Discretization of computational 

domain in P elements (triangles, 
rectangles …)

• Field expansion in each of the 
elements into q = 1 … Q basis 
functions Ψpq(x,y)

p = 1 
p = 2 

…

• The functional can then be written as quadratic matrix equation 
c: (PQ,1) - vector of coefficients cpq

A, B: (PQ,PQ) – matrices (Contains integrals of basis functions over elements)

• The stationarity condition for the functional yields an eigenvalue matrix 
equation that can be solved numerically to obtain the expansion coefficients cpq
and the propagation constant β

Eigenvector (expansion coefficients) Eigenvalue 
(leads to propagation constant)
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Numerical Mode Solvers

General procedure:

• Choice of a finite computational domain
• Discretization of refractive index profile
• Discretization of field equations
• Numerical solution of resulting linear 

system of equations / eigenvalue problem

n1 = 1.5

n2 = 1.44

Numerical mode solvers come with most 
commercial software packages for 
electromagnetic field simulations:

• Rsoft, Ossining, NY, BEAMProp, 
http://www.rsoftdesign.com

• CST, Darmstadt, Microwave Studio, 
http://www.cst.de

• Photon Design, Oxford, UK, FIMMwave
http://www.photond.com/

• Ansoft, Pittsburgh, HFSS http://www.ansoft.com

… and many more …
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Finite-Difference Method

Discrete approxiation of second-order partial derivatives:

Discretized mode field equation :

Formulation as a linear eigenvalue problem:

[PQ,1]-vector 
(eigenvector)

[PQ,PQ]-matrix Propagation constant 
(eigenvalue)

⇒ To be solved numerically
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Finite-Element Method

Further steps:
• Discretization of computational 

domain in P elements (triangles, 
rectangles …)

• Field expansion in each of the 
elements into q = 1 … Q basis 
functions Ψpq(x,y)

p = 1 
p = 2 

…

• The functional can then be written as quadratic matrix equation 
c: (PQ,1) - vector of coefficients cpq

A, B: (PQ,PQ) – matrices (Contains integrals of basis functions over elements)

• The stationarity condition for the functional yields an eigenvalue matrix 
equation that can be solved numerically to obtain the expansion coefficients cpq
and the propagation constant β

Eigenvector (expansion coefficients) Eigenvalue 
(leads to propagation constant)
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Sources of errors in numerical methods

• Model errors due to basic assumptions in the underlying algorithm, e.g.,
• Index contrast: Methods for low-index contrast fibers cannot necessarily 

be applied to high-index contrast integrated waveguides!
• Vectorial vs. scalar approaches: Scalar methods should only be used in 

weakly guiding waveguides

• Discretization errors 
• Representation of refractive index profile by discrete 

grid points 
• Finite difference approximation of the derivatives / finite 

element approximation of an integral expression
• Note: Given a certain number of grid points / finite 

elements, FEM methods usually allow for better 
representation, since elements adapt to structure shape

⇒ Refine mesh and check convergence

• Finite computational domain / boundary conditions a t 
domain edges
⇒ Extend computational domain / PML width and 

check convergence
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Demonstration: Numerical calculation of rib wavguid e mode

Program: Rsoft FemSIM
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Planar waveguide technologies – an overview

Prof. Dr.-Ing. Christian Koos

Mainstream technologies for planar lightwave circuit s (PLC):

• Glass waveguides
Low index-contrast, fabricated by ion exchange or deposition and etching

• Lithium niobate waveguides 
Used mainly for electro-optic modulators

• Polymer waveguides
Easy fabrication, but absorption losses in infrared

• Silicon nitride / Triplex waveguides
Variable index contrast, low loss

• Waveguides based on III-V compound semiconductors 
Used for active devices (lasers, semiconductor optical amplifiers, photodetectors)

• Silicon-on-insulator (SOI) waveguides 
Very compact, fabrication in CMOS fabs, current area of research
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Glass waveguides fabricated by deposition / etching ;
Silicon optical bench (SOB)

Prof. Dr.-Ing. Christian Koos

• Silicon substrate: Widely available, good thermal sink, 
good mechanical alignment (V-grooves for fibers)

• Geometry: Typical core size is 5 x 5 µm, the core is 
surrounded by ~ 20 µm base and cladding layers; relative 
index difference ∆ between 0.3 %  and 1.5 %

Si, n=3.48

SiO2, n=1.44

doped SiO2, ∆ n ≈ 0.01

∆n/n  = 0.3 % ... 1.5 %

Bend radius: > 2 mm for ∆n/n  = 1.2 % 
Loss (1550 nm): 0.01 – 0.1 dB/cm

• Fabrication: 
• The thick silica film is formed by chemical vapor deposition 

(CVD) or flame hydrolysis deposition (FHD) of SiO2
• Core layer is deposited by CVD and structured by photolithography and reactive ion 

etching (RIE).
• Cladding is deposited by CVD

• Applications: Optical communications, chemical sensing 
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Glass waveguides based on ion exchange

Prof. Dr.-Ing. Christian Koos

Principle:
• Refractive index of speciality glasses (e.g., IAG4) can 

be increased by ion exchange, i.e., by substituting Na 
with Ag

• Two-step process to fabricate embedded waveguides:

Na+

Ag+

air

glass

13 µm

10 µm

3 µm

B
ur

ie
d

de
pt

h
15

 µ
m 1. After thermal diffusion
(first step)

Glass surface

2. After E-field diffusion
(second step)

∆n ≈ 0.1 

Source: Leoni



Institute of Photonics 

and Quantum Electronics
145 21.10.2014

Glass waveguides based on ion exchange

Prof. Dr.-Ing. Christian Koos

Na+Na+

Step 1:
Waveguide near surface,
fabricated by thermal diffusion

Step 2:

Buried waveguide, 
fabricated by field-assisted ion exchange

Ag+

Molten salt
Mask

Glass

Na+

Source: Leoni

+ -
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LiNbO3 waveguides: Ti-indiffusion or proton exchange

Prof. Dr.-Ing. Christian Koos

∆n ≈ 0.002 ... 0.01

w ≈ 10 µm

∆n ≈ 0.02 ... 0.05 (extraordinary pol)
∆n ≈ -0.04 (ordinary pol)
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Polymers: Absorption Properties

Prof. Dr.-Ing. Christian Koos

• Relatively low loss at ~ 800 nm, but very high 
losses at 1300 nm and 1500 nm

• Reason: Overtones of C-H-bond oscillations: 
Fundamental oscillation at 3390 nm; overtone at 
~1700 nm, 850 nm …; absorption decreases 
exponentially with decreasing wavelength!

• Reduction of losses if H is substituted by 
Deuterium (D), Cl or F (larger atom mass leads to 
lower oscillation frequency, i.e. absorption is 
shifted further into IR)

PMMA

PC

Voges/ Petermann: Optische Kommunikationstechnik
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Polymer waveguides

Prof. Dr.-Ing. Christian Koos

Bruce L. Booth; Optical InterLinks, LLC
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Polymer waveguides

Yurii Vlasov, ’Silicon photonics for next generation computing systems’, ECOC 2008

Prof. Dr.-Ing. Christian Koos

Printed circuit board (PCB)
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Si3N4 / SiO2 waveguides

Prof. Dr.-Ing. Christian Koos

http://www.lionixbv.nl/download/pdf/flyertriplex.pdf

• Refractive indices:
SiO2: n = 1.44 at 1.55 µm
Si3N4: n ≈ 2.1 at 1.55 µm
SiOxNy: n = 1.44 … 2.1 at 1.55 µm

• Waveguide core : 
• Low-index silicon dioxide (SiO2) surrounded by a thin film of a high-index silicon 

nitride (Si3N4); index contrast can be adjusted by thickness of Si3N4 layer
• Low losses: <0.1dB/cm
• Typical core size: 1um x 1um

• Applications: Datacom, chemical sensing. LioniX trademark: “Triplex”
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Active waveguides: III-V compound semiconductors

Christian Koos

• Ternary compounds 
represented by the line that 
joins two binary compounds

• Quaternary compounds 
represented by the area 
defined by binary compound 
corners

Source: Saleh/Teich, 
Fundamentals of Photonics

Solid lines: Direct bandgap

Dashed lines: Indirect bandgap

In1-xGaxAs1-yPy

AlxGa1-xAs
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Active waveguides: III-V compound semiconductors

Prof. Dr.-Ing. Christian Koos

Cross sections of semiconductor lasers: Ridge and c hannel waveguides
• Refractive indices: 

InP: n = 3.17 at 1550 nm
InGaAsP: n ≈ 3.4 … 3.6 at 1550 nm
SiO2: n = 1.44 at 1550 nm

I I
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Silicon photonics

Silicon:
• Transparent at IR telecom wavelengths
• High refractive index

⇒ Nanophotonic devices
Dense integration
Small active volumes
Ultra-fast low-power switching
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• Mature CMOS fabrication processes
⇒ Cheap mass-production of

nanophotonic devices
⇒ Full integration of photonics and

electronics

Research expenses in 
the last 10 years:

> 450 G$ 
> 5 Mio man-years

G

S D
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Dr. Christian Koos

Crucial: Fast high-resolution lithography

Optical lithography Electron-beam lithography

light source

mask with
pattern

lens

photosensitive resist

electron gun

guidance of the 
electron beam

electron-
sensitive resist

Animation courtesy of Prof. Roel Baets, UGENT/IMEC
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Slid

State-of-the art CMOS tool: 193nm Immersion Lithography

λ = 193 nm, NA = 1.2, res = 45 nm
⇒ Suitable for nanophotonic devices 

1res
NA

k
λ=
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Slid

Separate metrology
wafer topography 
characterization

Dual wafer stage

ASML Wafer Stepper TWINSCAN™: 
Deep-UV (DUV) Lithography at 193 nm 
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Next-generation lithography: Extreme UV (EUV)

Christian Koos

http://www.hardware-infos.com

Wavelength: 13.5 nm
Introduction envisaged for 2015
Resolution: < 18 nm 

Source: Generation of EUV 
radiation in a Zn plasma 
that is optically pumped by 
a high-power laser
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Fabrication of silicon-on-insulator (SOI) waveguides

Silicon-on-insulator 
(SOI) wafer

Resist coating Lithography

Development Silicon etching
(e.g., reactive ion etching)

Final photonic wire

Si

SiO2

Si ~ 300 nm

> 2 µm
~ 300 nm
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SOI waveguides and bends

Dumon et al., Photon. Technol. Lett. 16 (2004), 1328-1330 Koos et al., IEEE Photon. Technol. Lett. 19 (2007) 

3 µm

2

Si, n = 3.48

SiO2, n = 1.44

Si substrate
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Optical Fibers
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Fiber loss and transmission windows

Keiser: Optical Fiber Communications

1966: Charles K. Kao showed that the losses 
of > 1000 dB/km in existing glass was due to 
impurities and can in principle be reduced to 
below 20 dB/km.
⇒ Optical fibers as transmission media;

Nobel Prize in Physics 2009

1970’s: Optical communications in the first 
transmission window (800 – 900 nm); GaAs-
based optical sources and detectors.

Early 1980’s: Further reduction of OH--ions 
and metallic ion impurities 
⇒ Second-generation fiber-optic transmission 

at around 1300 nm using InGaAsP lasers

Late 1980’s: Third transmission window 
around 1550 nm. Typical fiber losses of about 
0.2 dB/km (Record: 0.154 dB/km in fiber with 
low-index F-doped cladding); requires control 
of chromatic dispersion!
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Various kinds of optical fibers

Iizuka, Elements of Photonics, Vol. 2

Types of fibers:
• Step-index fibers
• Graded-index fibers
• Fibers with non rotation-symmetric index 

profiles
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Recall: Cylindrical coordinates

Rade / Westergren, Mathematische Formeln, Springer

Note : We use r for the radius rather than ρ …
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Step-index and graded-index profiles

Agrawal, Fiber-Optic Communication Systems
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Cylindrical coordinates and refractive index profile

Rotation-symmetric refractive index profile:

Parabolic index profile
Step index profile

Assumptions:
• Fields are confined to the core and the cladding 

can be assumed to be infinitely thick.
• Later: Low index contrast / small relative index 

difference core

cladding

jacket

wherePower-law profiles:
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Differential operators in cylindrical coordinates

Rade / Westergren, Mathematische Formeln, Springer
Back to „Bent waveguides“…
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Maxwell‘s equations in cylindrical coordinates

z r
ϕϕϕϕ

Mode ansatz:

Maxwell’s curl equations in polar 
coordinates:

Transverse field components can be 
expressed by Ez and Hz :
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Wave equations for longitudinal components
Components of E- and H-field can be separated 

• within homogenous core and cladding regions of step-index fibers
• within weakly inhomogeneous graded-index fibers

Formulate scalar wave equation for longitudinal components in polar coordinates:

Separation ansatz:

Basic solution for h(ϕ):

i.e., modes exist with two different 
ϕ-dependencies, “rotated by 90°”:

cos(ϕ) sin(ϕ)
x

y

x

y
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Radial field dependence
Differential equation for g(r):

Compare: Bessel differential equations

Rade / Westergren, Mathematische Formeln, Springer

“ ±±±±a2 ” “p 2 ”
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Radial field dependence
Differential equation for g(r):

Distinguish two cases:
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„Physically meaningful“ solutions

Rade / Westergren, Mathematische Formeln, Springer

First kind

Second kind

Core: 0 ≤≤≤≤ r ≤≤≤≤ a 

But:

Cladding: r > a 

But:

Back to LP modes
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Complete solution

Recombine separated functions:

Recall:

Complete solution for Ez and Hz-component:
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Recurrence relations for Bessel functions

Back to LP modes …
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TE modes
For ν = 0, ψ = π /2, we have:

The other E-field components can be derived using recurrence relations for Bessel 
functions:

Continuity of Eϕ at r = a yields the dispersion equation for TE modes:

The same relation is reproduced by the continuity requirements of Hr

Recall:
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TM modes and hybrid modes

For ν = 0, ψ = 0 , we have:

Continuity of Eρ and Hϕ at r = a yields the dispersion equation for TM modes:

Similarly, a dispersion equation can be derived for the general case where neither 
Hz nor Ez are zero:

Numerical solution of these equations yields the dispersion relation in its usual 
form …
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Dispersion relations of the step-index fiber

Chen, Foundations for Guided-Wave Optics, Wiley

• Fundamental mode of step-index 
fibers: HE11-mode

• Single-mode condition: V < 2.405 

(first zero of J0(u) )

• Groups of modes with similar 
dispersion characteristics, e.g., TE01, 
TM01 and HE21; these modes will 
lateron be merged to so-called linearly 
polarized (LPνµ) modes for weakly 
guiding waveguides. 

• Nomenclature of hybrid modes:
dominant longitudinal 

H-field component

Azimuthal 
mode index

dominant longitudinal 
E-field component

Radial
mode index

• TE- and TM modes
TE: Er = Ez = 0 ; Eϕ ≠ 0
TM: Hr = Hz = 0 ; Hϕ ≠ 0
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TE and TM: Mode designation and fields

TEνµνµνµνµ modes:
• Exist only for ν = 0 => rotational symmetry!
• µ denotes the number of maxima of Eϕ

along r (including the one at r = 0, if 
existent)

• Field components:

TMνµνµνµνµ modes:
• Exist only for ν = 0 => rotational symmetry!
• µ denotes the number of maxima of Hϕ

along r (including the one at r = 0, if 
existent)

• Field components:

Chen, Foundations for 
Guided-Wave Optics, Wiley
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Hybrid mode designation and fields

EHνµνµνµνµ- and HE νµνµνµνµ-modes:
• Exist for ν ≥ 1; ν denotes the azimuthal symmetry
• Each mode is two-fold degenerate: sin(νϕ) and cos(νϕ)-dependence
• (Conventional, somewhat arbitrary) nomenclature of EHνµνµνµνµ and HEνµνµνµνµ –modes 

according to the field with dominant z-component:
Hz dominates => EHνµνµνµνµ –mode; Ez dominates => HEνµνµνµνµ –mode

Chen, Foundations for Guided-Wave Optics, Wiley
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Optical fibers: Cylindrical coordinates and refractive index profile

Rotation-symmetric refractive index profile:

Parabolic index profile
Step index profile

Assumptions:
• Fields are confined to the core, i.e., the cladding 

can be assumed to be infinitely thick.
• Later: Low index contrast / small relative index 

difference core

cladding

jacket

wherePower-law profiles:
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Step-index fiber: Wave equations for longitudinal components
Components of E- and H-field can be separated 

• within homogenous core and cladding regions of step-index fibers
• within weakly inhomogeneous graded-index fibers

Formulate scalar wave equation for longitudinal components in polar coordinates:

Separation ansatz:

Basic solution for h(ϕ):

i.e., modes exist with two different 
ϕ-dependencies, “rotated by 90°”:

cos(ϕ) sin(ϕ)
x

y

x

y
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Dependence on r: „Physically meaningful“ solutions

Rade / Westergren, Mathematische Formeln, Springer

First kind

Second kind

Core: 0 ≤≤≤≤ r ≤≤≤≤ a 

But:

Cladding: r > a 

But:

Back to LP modes
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Complete solution

Recombine separated functions:

Recall:

Complete solution for Ez and Hz-component:
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Dispersion relations of the step-index fiber

Chen, Foundations for Guided-Wave Optics, Wiley

• Fundamental mode of step-index 
fibers: HE11-mode

• Single-mode condition: V < 2.405 

(first zero of J0(u) )

• Groups of modes with similar 
dispersion characteristics, e.g., TE01, 
TM01 and HE21; these modes will 
lateron be merged to so-called linearly 
polarized (LPνµ) modes for weakly 
guiding waveguides. 

• Nomenclature of hybrid modes:
dominant longitudinal 

H-field component

Azimuthal 
mode index

dominant longitudinal 
E-field component

Radial
mode index

• TE- and TM modes
TE: Er = Ez = 0 ; Eϕ ≠ 0
TM: Hr = Hz = 0 ; Hϕ ≠ 0
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Linearly polarized (LP) modes

Wave equation for dominant electric field component:

Investigate spatial dependence of Ex in polar coordinates:

Note: Ψ (r,ϕ) must be “approximately continuous” at r = a!
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Linearly polarized (LP) modes

Solution ansatz (in analogy to derivation of hybrid modes!):

Longitudinal electric field component:



Institute of Photonics 

and Quantum Electronics
186 21.10.2014 Christian Koos

Linearly polarized (LP) modes

Characteristic equation of LPνµ – modes:

Recurrence relations of Bessel functions...
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LP-modes: Solution of characteristic equation

Okamoto, Fundamentals of Optical Waveguides

Numerical solution of

Circular arc

Mode designation:

ν: Azimuthal dependence: cos(νϕ) or 
sin(νϕ); 2ν = number of intensity 
maxima along the circumference

µ: Denotes the various solutions for a 
given ν and can be identified with 
the number of intensity maxima in 
radial direction
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LP-modes: Mode fields

http://www.rp-photonics.com/multimode_fibers.html

• Different notation:
ν = l; µ = m

• Degeneracy of modes:

ν = 0: Twofold degenerate 
(two orthogonal 
polarizations)

ν > 0: Four-fold 
degenerate (cos(νϕ)- and 
sin(νϕ)-dependence, each 
in two orthogonal 
polarizations)
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Linearly polarized (LP) and hybrid (TE, TM, EH, HE) mo des

Chen, Foundations for Guided-Wave Optics, Wiley

LP11
(Four-fold 
degenerate!)

HE

LP

V

V

B

B

V

HE‘21

TE01 + HE‘21 TE01 - HE‘21
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LP-modes: Cut-off frequencies

Recall: Characteristic equation of LP – modes for ν > 0:

Waveguiding limit: Fields extend into the whole cladding region

⇒ Jν-1(V) = 0 at cut-off, i.e., the normalized cut-off frequency Vνµ,C of the LPνµ-
mode is given by the µ-th positive zero jν-1,µ of Jν-1

Note: J-1(u) = J1(u), where u = 0 is counted as the first zero of Jν-1(u) only for ν = 0! 

=> LP0µ and LP,µ--modes have the same cut-off frequencies! 

Bessel function plots
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HE vs. LP mode designation and cut-off frequencies

Chen, Foundations for Guided-Wave Optics, Wiley

General mode equivalences for 
weakly guiding fibers:

V11c = j 01 = 2.405

V21c = V02c = j 11 = 3.832
J0

J1 = -J-1
J2

J4

V31c = j 21 = 5.136
V12c = j 02

= 5.520
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Number of guided modes

=> How many guided LP modes exist? 
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Number of guided modes in step-index fibers
Approximation for large zeros of Bessel functions:

Notation: jν,s = s-th positive 
zero of Jν(u)

Abramowitz / Stegun, Handbook of Mathematical Functions

In our case:

Number of guided modes:



Institute of Photonics 

and Quantum Electronics
194 21.10.2014

core

cladding

jacket

Christian Koos

Graded-index fibers

Relative index difference

Note: Many fibers of practical interest do not have a 
step-index profile!

Examples:
• Parabolic-profile step-index fibers (“GRIN-lenses”)
• Manufactured fibers with non-perfect step-index 

profiles

⇒ Power-law description of rotationally symmetric 
index profile:

Profile function (power law)

Profile parameter

Note that closed-from solutions exist only for the special cases of step-index 
profiles (q →→→→ ∞∞∞∞) and infinitely extended parabolic index profiles (q = 2)!
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Infinitely extended parabolic index profile

i.e., all modes with identical m are degenerate!

Assumption : Infinitely extended parabolic index profile (unphysical!)

Harmonic azimuthal dependence :

Solution for radial dependence (without derivation) : Gauss-Laguerre modes

Propagation constant:

Gaussian field radius

Ordinary Laguerre polynomials of 
degree µµµµ

Modified Laguerre polynomials of 
degree µµµµ and order νννν
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Gauss-Laguerre mode fields

Mode designation ( νννν, µµµµ):
ν: Azimuthal dependence: cos(νϕ) or sin(νϕ); 2ν = number of 

intensity maxima along the circumference
µ: Denotes the various solutions for a given ν and can be 

identified with the number of intensity maxima in radial 
direction (including the maximum at r = 0 for ν = 0)

Degeneracy of modes:
ν = 0: Twofold degenerate 

(two orthogonal polarizations)

ν > 0: Four-fold degenerate
(cos(νϕ)- and sin(νϕ)-dependence, each in two orthogonal 

polarizations)
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Infinitely extended parabolic index profile: 
Number of guided modes

Number of guided modes:

Cut-off:

Guided modes must fulfill:

i.e., in comparison with a step-index fiber of same  V, the parabolic index 
profile accepts approximately only half the number  of guided modes!
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Photonic-bandgap fibers

• Cladding: Concentric rings / periodic structures of high- and low-index 
materials 

⇒ Guidance due to multiple reflections (“photonic bandgap”)
• Core: Can be hollow!
• Hollow-core fiber: Little interaction of guided light with fiber material
⇒ Low absorption for wavelengths where no transparent fiber materials 

are available.
Weak nonlinear effects, high power levels (e.g. for material processing)

Bragg fiber Photonic-crystal fibers
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Photonic crystal fiber: Fundamental modes ?

Mode 1

Mode 2

Looks „suspicious“: Mode field does not have the same symmetry properties as the structure!
⇒ Choose finer discretization; check convergence!
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Photonic crystal fiber: Fundamental modes !

Mode 1

Mode 2
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Drawing of optical fibers: One- and two-stage proces ses
One-stage process: 
Fiber directly drawn from 
liquefied base materials

Two-stage process: 
Fiber drawn from a 
solid preform rod

Diffusion => Graded 
index profile

Capstan 
drive

Adapted from Iizuka, “Elements of Photonics”

Here: Double-
crucible method
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Low-loss silica glass fibers
• Telecom fibers consist of highly pure fused silica (amorphous SiO2, “Quarzglas”)
• Purity in the sub-ppb-range needed! => Material is made synthetically by chemical vapor 

deposition (CVD):
• Oxidizing silicon tetrachloride (SiCl4); this yields highly pure white SiO2 soot, which 

is melted into the preform 
• Dopants allow to increase/decrease refractive index:

• Oxidation of GeCl4 (POCl3) leads to formation of GeO2 (P2O5) => Increase of 
refractive index

• Flourine (F) doping allows to reduce the refractive index

wavelength / µm

a 
/ (

dB
/m

 ×
pp

m
-1

)

Adapted from Hecht, 
“Understanding Fiber Optics”
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Synthesis of highly pure silica by CVD

Iizuka, “Elements of Photonics”

• Vastly different in vapor 
pressures of impurity-metal 
halides and SiCl4, GeCl4 or 
POCl3

• Evaporation of, e.g., SiCl4 at 
65° and normal pressure 
leaves unwanted VCl4, FeCl3
etc. in the liquid!

⇒ Synthesis of highly pure SiO2
possible
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Silica preform fabrication: Inside vapor deposition  (IVD)

Material gases evaporated under well-controlled conditions 
(temperature and pressure)

Silica soot deposited to the inner 
walls of a silica rod, fused to the 
tube wall as the flame passes!

Iizuka, “Elements of Photonics”
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Silica preform fabrication: OVD and VAD

Outside vapor deposition (OVD)

Iizuka, “Elements of Photonics”

Vapor Axial Deposition (VAD)

• Material gases directly injected into the hydrogen flame
• Deposited soot contains OH--ions which lead to optical loss and must hence be removed 

by flushing the preform with Cl2 at elevated temperatures before melting the soot into a 
solid preform

• VAD allows for very long preforms contrast to OVD and IVD
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Preform fabrication for microstructured fibers

Preform: Stack of hollow 
glass tubes and rods, 
enclosed by outer tube

Melting/drawing yields 
microstructured (“holey”) fiber

Fabrication by drawing from solid preform:

Hecht, “Understanding Fiber Optics”
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Polymer fibers

Prof. Dr.-Ing. Christian Koos

• Large infrared material absorption due to overtones of C-
H-bond oscillations (fundamental oscillation at 3390 nm; 
overtones at ~1700 nm, 850 nm …) 

• Absorption can be reduced by using fluorinated 
polymers (lower oscillation frequency!)

• Losses today: > 20 dB/km (850 nm / 1300 nm)
• Advantages: Large diameters (85 um … > 3mm)

=> Relaxed mechanical tolerances
• Applications:

• Image transmission bundles
• Short data links in automotive, optical interconnects, 

home installations
• Fabrication of polymer fibers: Drawing from solid 

preform or extrusion (esp. in mass production)

PMMA

PC

Voges/ Petermann: Optische Kommunikationstechnik
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Signal propagation in fused-silica fibers: Loss spe ctrum

OH- absorption peaks

Lossy higher-order mode

Attenuation of Ge-doped (∆=0.25 %) singlemode fibre:

Note:

VAD = Vapor axial 
deposition

MCVD = Modified
chemical vapor
deposition

Basic loss mechanisms:
• Intrinsic absorption
• Extrinsic absorption
• Scattering
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Sources of loss in silica  fibers I
Intrinsic absorption:
• Unavoidable absorption by fused silica 

(SiO2)
• Electronic resonances in the ultraviolet 

(λ < 0.4 µm) => UV absorption
• Vibrational resonances in the infrared 

(λ > 7 µm)  => IR absorption
• Intrinsic loss below 0.1 dB/km in the 

wavelength range between 1.3 µm and 
1.6 µm

Extrinsic absorption due to impurities
• Transition metals Fe, Cu, Co, Ni, Mn and Cr 

absorb strongly in the wavelength range between 
1.3 µm and 1.6 µm => Need to reduce 
concentration below 1 ppb

• OH-absorption due to water / OH- ions: 
Vibrational resonance of the OH-bond occurs near 
2.73 µm; harmonic and combination tones with 
silica resonances produce absorption around 
1.39-µm, 1.24 µm and 0.95 µm

• Standard fibers: OH- concentration below 10-8; 
1.39 µm absorption peak below 1 dB / km wavelength / µm

a 
/ (

dB
/m

 ×
pp

m
-1

)
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Sources of loss in silica  fibers II

• “Dry fiber”: OH- concentration reduced to 
such low levels that the absorption peak 
almost disappears; can transmit signals over 
the entire band between 1.3 µm and 1.6 µm 
and is marketed under the trade name

Rayleigh scattering:
• Amorphous material => Random fluctuations of the refractive index on a scale much smaller 

than the wavelength 
=> Rayleigh scattering

• Loss ~ λ-4, amounts to around 0.12 – 0.16 dB/km at 1550 nm
• Dominant loss mechanism in state-of-the art fibers!

Waveguide imperfections:
• Imperfections at core-cladding interface , e.g., random core radius variations (typically below 

1%); resulting fiber loss is typically below 0.03 dB/km
• Microbends : Random axial distortions; can occur when the fiber is “squeezed”, e.g. inside a 

cable assembly; can be minimized by appropriate cabling (jelly) and by keeping the 
normalized frequency V as large as possible (typically between 2.0 and 2.4)

• Macrobends : Bend radii of typically a few millimeters (“visible with the bare eye”); bending 
loss is usually negligible for single mode fibers and bend radii larger than 5 mm
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Alternatives to silica glass ?

• Minimize Rayleigh scattering by using 
bigger wavelengths => Needs low 
infrared absorption! 

• Materials with low intrinsic IR losses 
exist, but extrinsic absorption lead to 
attenuation values much larger than 
those of silica fibers!

• In addition: Devices (especially fast 
detectors) not available at wavelengths 
beyond 2 µm!

⇒ Currently no alternative to silica 
glass fibers!
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Signal propagation in dispersive single-mode fibers

z

Christian Koos

Propagation:

Taylor expansion of mode propagation constant for narrowband (slowly varying) signal:

where

Optical fiber
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Quantitative analysis of chromatic dispersion

Christian Koos

Electric field of an LP-mode propagationg along a fiber

z- and t-dependence and slowly varying envelope ansatz:

Propagation:

Evolution of slowly varying envelope in the frequency domain:
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Quantitative analysis of chromatic dispersion

Christian Koos

Evolution of slowly varying envelope in the time domain:

Use retarded time frame:

Elimination of β (1):

Corresponding frequency-domain formulation for β (3)  = 0:

Note that the primes are usually omitted …
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Propagation of a chirped Gaussian impulse

Christian Koos

Chirped Gaussian input impulse at z = 0 (chirp parameter α):

After propagation distance z: Gaussian shape preserved, but dispersive pulse broadening 
(Treatment in retarded time frame, but primes omitted!)

Time-bandwidth product increased by chirp:

Pulse broadening:
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Gaussian impulse propagation in dispersive fibers

Christian Koos

Dispersion length

• An unchirped impulse (α = 0) 
broadens as

• A chirped pulse may broaden
(β(2) α > 0) or compress (β(2)α < 0) 
during propagation, depending on 
the relative sign of β and α

α = 0

α = -2α = -2

α = 2

Agrawal, Fiber-Optic Communications Systems



Institute of Photonics 

and Quantum Electronics
217 21.10.2014

Limitations of dispersive broadening on data rate

Christian Koos

Consider narrowband optical source, modulated with unchirped Gaussian pulses : 
Spectral width of the signal 
defined by the modulation

Broadband optical sources : Spectral width defined by the source

Width of the source spectrum

⇒ The data rate scales with the square root of 
the distance

Minimum width of output impulse:

Limitation on data rate B:

⇒ The data rate scales linearly with 
the distance
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Dispersion-induced bit rate limitations

Christian Koos

Agrawal, Fiber-Optic Communications Systems

Narrowband optical source:

Broadband optical source:

β(2) = 0; β(3) ≠ 0

Operation near zero-
dispersion wavelength
⇒ Higher-order dispersion 

terms dominate!
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Material dispersion M

Total chromatic 
dispersion C for WG 1 
(weakly guiding)

Total chromatic 
dispersion C for WG2 
(strongly guiding)

Waveguide dispersion 
W for WG 1 (weakly 
guiding)

Waveguide dispersion 
W for WG2 (strongly 
guiding)

Zero material-dispersion 
wavelength λ

Zero-dispersion wavelength λ 

of WG 1 (weakly guiding)
Zero-dispersion wavelength λ 

of WG 2 (strongly guiding)

Recall: Dispersion engineering of a slab waveguide
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Dispersion characteristics and dispersion compensation

Christian Koos

CSF/SMF DSF
CSF, DSF, 
and DCF

Consider concatenated fibers (lengths L1 and L2) :

Original pulse shape reproduced for:

Dispersion Compensation:

Dispersion compensation by using fibers with 
opposite signs of β(2).
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Waveguide-based devices and systems
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Mode expansion method

Christian Koos

Very often, dielectric waveguide
structures are piecewise invariant in the
propagation direction. For each of these
sections, an eigenmode expansion can
be used to describe the field
propagation:

Guided 
modes

Radiation modes

Guided 
modes

Radiation modesContinuous set with 
integration parameter ρ
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Recall: Propagating eigenmodes of a slab waveguide

Christian Koos

Note: The external plane waves associated with the radiation modes can have
any propagation direction.
⇒ In contrast to guided modes, propagating radiation modes form continuous

sets with propagation constants

n3 < n2

n2

n1

n3 < n2

n2

n1

n3 < n2

n2

n1

n3 < n2

n2

n1

µ = 1 µ = 2

Guided mode (discrete set) Radiation mode („substrate mode“)
(continuous set)

Radiation mode („cover mode“)
(continuous set)

Chen, Guided Wave Optics
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Completeness of mode set; scalar mode expansion

Christian Koos

Guided modes and radiation modes form a complete basis. That means that every
solution E(r), H(r) of Maxwell’s equations can be represented by a superposition of
these modes,

For modes of weakly guiding low index-contrast waveguides, one transverse field
component is usually much stronger than the other field components. For a given
polarization, the dominant transverse component can then be associated with a
scalar function Ψ(x,y,), and the vectorial mode expansion can be reduced to a
scalar expansion of the dominant transverse field component Φ(x,y)

Note that this expansion is not any more complete (valid for one polarization only!)
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Orthogonality relations of mode fields

Christian Koos

⇒ Orthogonality relation for guided modes:

where

Similarly: Orthogonality relation for radiation modes

where

Guided modes and radiation modes are always orthogonal to each other:

Consider two guided waveguide modes:
Vector differential operators
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Vector differential operators

Christian Koos

Back to orthogonality relations …
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Simplified orthogonality relations

Christian Koos

Maxwell’s equations for guided modes are invariant under the transformation:

=> Simplification for waveguide modes propagating in the same direction (βν ≠ -βµ):

For scalar mode field representations of weakly guiding, low-index contrast
waveguides:

where
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Example: Coupling efficiency

2

Si, n = 3.48

SiO2, n = 1.44

Si substrate

Illumination of a waveguide facet with a 
free-space beam
=> How much power is coupled into the

fundamental waveguide mode?

z

Mode expansion of illuminating field at z = 0:

Fundamental mode amplitude:

Power coupling efficiency:

For scalar mode fields (problem set!):
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Orthogonality relations of mode fields

Christian Koos

⇒ Orthogonality relation for guided modes:

where

Similarly: Orthogonality relation for radiation modes

where

Guided modes and radiation modes are always orthogonal to each other:

Consider two guided waveguide modes:
Vector differential operators
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Vector differential operators

Christian Koos

Back to orthogonality relations …
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Simplified orthogonality relations

Christian Koos

Maxwell’s equations for guided modes are invariant under the transformation:

=> Simplification for waveguide modes propagating in the same direction (βν ≠ -βµ):

For scalar mode field representations of weakly guiding, low-index contrast
waveguides:

where
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Multi-mode interference (MMI)  coupler

Single-mode input waveguide

Multi-mode interference
(MMI) section

where

n1ene1

ne2

Okamoto, Fundamentals of Optical Waveguides

Basic configuration:
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Analysis of MMI section

Prof. Dr.-Ing. Christian Koos

h1
h2

n2

n3

n1

w

slab 1 slab 2 slab 3

ne2 ne1 ne2

x

y z

x

y y
Reduce 3D problem to 2D by using the
effective-index approximation…

Propagation in MMI section:

u

Far from cut-off, we find:
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Self-imaging withinan MMI coupler

3Lππππ Self-imaging: Input field is reproduced in 
single and multiple images along the
propagation direction of the MMI section

Okamoto, Fundamentals of Optical Waveguides

More general:
N images after propagation distance

where p and N are integers without common 
divider

… for a suitable excitation of modes at z = 0, 
see below (this does not hold for the situation
depicted on the left!)
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Further information on MMI couplers
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Directional coupler

Closely spaced waveguides running in parallel to each other
⇒ Evanescent tails of individual eigenmodes interact with neighboring waveguides
⇒ Oscillation of power between the two waveguides
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Analysis of directional couplers
Perturbation approach: 
• Electromagnetic field represented by a 

superposition of modes of the indivudal 
waveguides with z-dependent mode amplitudes

• For simplicity: Consider guided modes only

WG 1 WG 2

Maxwell’s equations for total structure:

Note:

Maxwell’s equations of individual waveguides:

Orthogonality relation for guided modes:
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Mode coupling equations:

where

Notes:
• Here, the mode amplitudes A(z) are dimensionless quantities
• Pν is used for power normalization of the mode fields 

Analysis of directional couplers

• The physical power Pν is given by the mode amplitude and the power contained in the 
associated mode field:

• In many cases, both waveguides have the same cross section and both mode fields are 
normalized to the same power. We may then simplify the mode coupling equations:

• Phases of mode fields can then be adjusted such that κ is real
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Directional coupler

General solutions for coupled waveguides:

where

For identical waveguides (A1 (0) = A0; A2(0) = 0):

i.e., power is oscillating back and forth between the waveguides.

Equal power in both waveguides for κ z = π/4:

Mismatch of propagation constant
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Power oscillations in directional couplers

Chen, Foundations for
guided-wave opticsMechanical analogon: Coupled pendula

http://www.theorphys.science.ru.nl/people/fasolino/sub_java/pendula/laboratory-en.shtml

identical waveguide 
cross sections,
no “detuning”

Strong “detuning”, 
incomplete power 
transfer
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Waveguide gratings: Coupled-mode theory

Regular, z-independent waveguides : 
• Orthogonal eigenmodes propagate in an 

independent way 
• Field can be written as a linear superposition of 

eigenmodes with constant mode amplitudes

Slightly irregular wavegeuides with small 
deviations from z-independent structure:
• Can be considered as perturbed z-independent 

structure:

Chen, Foundations for guided-wave optics

• Field can be approximated by modes of unperturbed structures with z-dependent mode 
amplitudes:

• The evolution of the mode amplitudes is dictated by the coupling of these modes due to 
the perturbation of the waveguide
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Coupled-mode equations for guided modes 

Maxwell‘s curl equations for the perturbed waveguide structure:

Mode expansion (for simplicity, consider guided modes only):

Using the orthogonality relation, the mode coupling equations can be derived:

where the coupling coefficients are given by:

Interpretation: The dielectric perturbation is “weighted” by the electric fields of the 
modes. Coupling is most effective if perturbations occur in regions where the E-fields 
are strong!
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Coupled-mode equations for guided modes 

Note:

• The quantity

gives the power that is contained in the mode field representations. Note that Pµ < 0 for 
modes that propagate to the left. The physical power flux is given by  P = | Aµ |2 Pµ

• If all modes have the same power normalization (P =P =…) and if ∆ ǫ is real, then the 
coupling coefficients obey the following symmetry relations:

• The phases of two mode fields ν and µ can be adjusted such that κνµ is real
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Mode coupling by periodic perturbations

Taylor expansion of periodic perturbation:

Mode-coupling equation:

where

Interpretation: Two modes with propagation constants βν and βµ are most effectively 
coupled by the spatial frequency component qK that corresponds to the difference βν - βµ
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Example: Grating-assisted fiber-chip coupling

Chen, Foundations for guided-wave optics

10°

TE   

SMF

Coupling of guided mode to radiation 
modes by periodic perturbation:

First-order grating (q = -1):

n2

n3

n1
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Example: Grating-assisted coupling and mode conversion

Chen, Foundations for guided-wave optics

Higher-order diffraction in Grating-assisted
fiber-chip couplers:

Grating-assisted mode conversion:

q = -1

q = -2

TE0 -> TE1

Contradirectional
coupling
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Example: Contra-directional coupling and 
Waveguide Bragg gratings

Ar(0) = A0

Al(0) = ?
Ar(L) = ?
Al(L) = 0

Consider two counter-
propagating but otherwise 
identical modes:

Coupled-mode equations for perturbation ∆ǫ(x,y,z) with zero mean value along z:

where

General solution:

Detuning (Bragg) 
parameter

where
Chen, Foundations for guided-wave optics
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Waveguide Bragg gratings: Transmission and reflection

Chen, Foundations for guided-wave optics

|Ar(z)|2

|Al(z)|2

|Ar(z)|2

|Al(z)|2

Peak power reflectance 
for δ = 0:
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Waveguide Bragg gratings: Transmission and reflection

Chen, Foundations for guided-wave optics
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Material absorption and modal loss

Assumption: Waveguide core is affected by absorption loss, 
i.e., the complex refractive index has a nonzero imaginary part. 
This can be interpreted as a perturbation of the refractive index 
profile:

By formally applying the coupled mode theory to the 
fundamental mode, we obtain the power attenuation along the 
waveguide:

where: Modal loss coefficient

Material loss coefficient

Field confinement factor (“fraction of optical 
power that propagates in the waveguide core”)

Si

SiO2
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Material and modal gain: Same procedure

where:

Modal gain coefficient

Material gain coefficient

Field confinement to the gain region (“g.r.”)

I

Active waveguide core 
= gain region (g.r.)

Modal gain in an active optical waveguide: 
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Bent waveguides

Radiation loss of bent waveguides
The phase front of the guided mode is rotating around
the center of the bend. Because the group velocity of
the phase fronts cannot exceed the speed of light
(c/n), the phase fronts bend and cause radiation. The
radiation loss increases exponentially with decreasing
bend radius.

Analysis of waveguide bends :
• Assume low-index contrast waveguide 

structure and use scalar approximation.
• Reduce the problem to two dimensions by 

applying the effective index method.
• Use polar coordinates (r,ϕ) and consider 

propagation in azimuthal direction.

Differential operators in cylindrical coordinates…
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Analysis of bent waveguides
Scalar Helmholtz equation in polar coordinates:

Separation ansatz:

Azimuthal dependence:

Remaining equation for radial dependence:

Coordinate transformation from r to u:
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Analysis of bent waveguides

Transformed Helmholtz equation:

where

⇒ The transformed Helmholtz
equation in the (u,ϕ)-coordinate
system has exactly the same
form as in a Cartesian coordinate
system if the refractive index
profile is replaced by the
transformed profile. Propagation
in bent waveguides can therefore
be calculated by solving the
equivalent straight waveguide.

R. Baets, „Dielectric waveguides“, Lecture notes
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Analysis of bent waveguides - discussion

R. Baets, „Dielectric waveguides“, lecture notes

ne,t

Power leakage

Power leakage will occur from the guided mode of the transformed waveguide 
(effective index ne,t) to the region defined by:

nt(u)

This can be interpreted as „tunneling“ of photons through the „potential barrier“ 
defined by the curvature and the index contrast. Decreasing the radius of curvature 
makes the potential barrier narrower, and power leakage increases exponentially.
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Analysis of bent waveguides - discussion

• The mode field will be concentrated in the
region with the highest index, i.e., it will be
„pressed“ towards the outer side of the
bend. This leads to adaptation losses at
the transition between the straight and the
bent section. Power loss can be mitigated
by a lateral offset at the transition.

• For wide waveguides and strong curvature, the mode will only be guided by the outer contour
of the waveguide, and the inner contour will not play a role. These modes are called
whispering gallery modes.

R. Baets, „Dielectric waveguides“, lecture notes

Del‘Haye et al., Nature Dec. 20, 2007Koos et al., IEEE Photon. Technol. Lett., Vol. 19, 
pp. 819-821 (2007)
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Optical Waveguides and Fibers
- Summary -
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Summary I

Fundamentals of Wave Propagation
• Dielectric polarization and susceptibility, complex refractive index
• Causality and Kramers-Kronig relation
• Absorption and material dispersion
• Lorentz oscillator model of bound charges, refractive index and absorption
• Sellmeier equations
• Drude mode for conductive media
• Signal propagation in dispersive media, group delay, group velocity, group refractive 

index, group velocity dispersion
• Material dispersion of fused silica

Dielectric slab waveguides
• Plane dielectric boundary: Reflection and transmission for TE and TM-polarization, power 

transmission and reflection, total internal reflection, field distribution
• Slab waveguide: Formation of guided modes, lateral self-consistence, interpretation of 

normalized waveguide parameters, graphical solution, TE and TM modes, field patterns 
of different guided modes

• Procedure for calculating for TE and TM modes
• Signal propagation in dispersive waveguides, effective group refractive index, dispersive 

effects, intermodal dispersion, chromatic dispersion, material dispersion, waveguide 
dispersion, “engineering” waveguide dispersion

• Formation of surface plasmon polaritons (SPP), special properties of SPP
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Summary II

Planar integrated waveguides
• Different types of integrated waveguides
• Marcatili method: Basic idea, underlying assumptions, limitations
• Ex and Ey modes of a channel waveguide
• Effective index method: Basic idea, underlying assumptions, limitations
• Numerical mode solvers: General procedure, basic idea of finite difference mode solvers, 

termination of computational domain, sources of errors
• Integrated waveguide technologies: Glass waveguides, fabrication of waveguides based 

on ion exchange, proton exchange, polymer waveguides and absorption properties, 
silicon-based waveguides

Optical fibers
• General properties of fused-silica fibers: Fiber loss, transmission windows
• Solution procedure for step-index fibers (no derivation!), separation ansatz, qualitative 

dependence of fields on radial and azimuthal coordinates, “physically meaningful 
solutions”, fundamental mode, single-mode condition

• Hybrid modes and LP-modes, mode field nomenclature for LP modes
• Basic procedure to estimate the number of guided modes
• Graded-index fiber (no derivation, no formulae!), Gauss-Laguerre mode designation,
• Fiber materials and technologies: “Glass fibers”, fused silica fibers, fiber fabrication, 

polymer fibers, microstructured fibers
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Summary III

• Fiber losses: Sources of loss, loss minimization
• Signal propagation in dispersive fibers, chromatic dispersion, waveguide dispersion, 

material dispersion, quantitative analysis of chromatic dispersion, slowly varying 
envelope approximation and retarded time frame, propagation of chirped Gaussian 
impulse

• Limitations of dispersive broadening on data rate 
• Dispersion characteristics of single-mode fibers, CSF, DSF, DCF, dispersion engineering, 

dispersion compensation
Waveguide-based devices
• Mode expansion method: Guided modes and radiation modes, completeness and 

orthogonality of mode sets
• Coupling efficiency: Basic idea of analysis (no derivation!) 
• Multi-mode interference coupler (MMI): Basic idea of analysis of self imaging properties 

(no derivation!)
• Directional couplers: Basic idea, coupling of power between parallel waveguides, 

“mechanical analogon”
• Waveguide gratings: Basic idea, mode coupling by periodic perturbations,  grating-

assisted fiber-chip coupling, waveguide Bragg gratings, co-directional coupling
• Absorption and gain in optical waveguides: Basic idea of analysis, field confinement 

factor
• Bent waveguides: Basic idea of analysis, transformation of index profile, power leakage, 

whispering-gallery modes


